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Abstract—Goal: The aim of this study was to investigate the nor-
malization of the intrinsic functional activity and connectivity of TS
adolescents before and after the cranial electrotherapy stimulation
(CES) with alpha stim device. Methods: We performed resting-
state functional magnetic resonance imaging on eight adolescents
before and after CES with mean age of about nine-years old who
had Tourette’s syndrome with moderate to severe tics symptom.
Independent component analysis (ICA) with hierarchical partner
matching method was used to examine the functional connectiv-
ity between regions within cortico-striato-thalamo-cortical (CSTC)
circuit. Granger causality was used to investigate effective connec-
tivity among these regions detected by ICA. We then performed
pattern classification on independent components with significant
group differences that served as endophenotype markers to distin-
guish the adolescents between TS and the normalized ones after
CES. Results: Results showed that TS adolescents after CES treat-
ment had stronger functional activity and connectivity in anterior
cingulate cortex (ACC), caudate and posterior cingulate cortex
while had weaker activity in supplementary motor area within the
motor pathway compared with TS before CES. Conclusion: The
results suggest that the functional activity and connectivity in mo-
tor pathway was suppressed while activities in the control portions
within CSTC loop including ACC and caudate were increased in
TS adolescents after CES compared with adolescents before CES.
Significance: The normalization of the balance between motor and
control portions of the CSTC circuit may result in the recovery of
TS adolescents.

Index Terms—Cranial electrotherapy stimulation (CES), inde-
pendent component analysis (ICA), machine learning, resting-state
fMRI (rs-fMRI), Tourette’s syndrome (TS).

I. INTRODUCTION

T
ourette’s syndrome (TS) is a neurological disorder charac-

terized by repetitive, stereotyped, involuntary movements,
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and uncontrollable vocal tics. These symptoms typically ap-

pear before the age of 18 and the condition occurs in all ethnic

groups with males affected three to four times more often than

females [1]. The cortico-striato-thalamo-cortical (CSTC) circuit

has been verified as an underlying neurobiological correlate of

TS [2], [3]. High-resolution structural magnetic resonance imag-

ing has shown that children and adult TS subjects displayed

extensive brain abnormalities, including cortical thickness [4],

[5] and changes in gray or white matter volumes in brain re-

gions involved in prefrontal, sensorimotor, cingulate cortices

and basal ganglia within CSTC circuit [6], [7]. Diffusion tensor

imaging demonstrated that TS patients had decreased fractional

anisotropy and increased radial diffusivity in the corticospinal

tract, the corpus callosum, and long association fibre tracts com-

pared with normal controls [8], [9]. In another study, the diffu-

sion indices and tic severity of TS was reported to have a positive

correlation in the amygdale, nucleus accumbens, globus pal-

lidus, and putamen [10]. Functional neuroimaging studies have

revealed brain activation and connection alterations in TS sub-

jects during a variety of tics and nontics tasks [11], [12], includ-

ing an increased functional interaction between primary motor

cortex and supplementary motor cortex (SMA) during tics than

intentional movements [13], different neuronal networks and

connectivity patterns when performing increasingly demanding

finger-tapping tasks [14], reduced activity in precentral gyrus,

caudate and increased activity in medial frontal gyrus during

finger-tapping task [15], frontal cortex and striatum during eye

blinking inhabitation [16], altered connectivity of the ventral

striatum in TS individuals with analyzing the functional cou-

pling based on positron emission tomography [17]. Moreover,

our previous study has investigated spontaneous and simulated

tics in TS individuals with revealing that tics were caused by

the combined effects of excessive activity in motor pathway

and reduced activation in control portions of CSTC circuit [18],

[19].

However, most studies have mainly examined task-specific

neural anomalies in TS. It is likely that the core neural causes

of TS are task independent. Several previous studies have also

investigated resting-state functional magnetic resonance imag-

ing (rs-fMRI) in TS subjects. One previous study computed

the amplitude of low-frequency fluctuation (ALFF) and frac-

tional ALFF (fALFF) of rs-fMRI data and found decreased

ALFF/fALFF in posterior cingulate gyrus, anterior cingulated

cortex, frontal cortex, and increased ALFF/fALFF in putamen

and thalamus [20]. Another study investigated the functional
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connectivity of the fronto-parietal control network and the

cingulo-opercular control network with the predefined 39 re-

gions of interest (ROIs) [21]. In addition, the temporal pattern

of tic generation was demonstrated to follow the CSTC circuit

by investigating tic-related activity and the underlying resting

state networks [22]. But the functional connectivity and causal-

ity of the intrinsic CSTC neural circuits are still not examined.

We present the first study, as far as we know, to apply the

independent component analysis (ICA) with hierarchical part-

ner matching (HPM) algorithm following by granger causality

analytical approaches used by Wang et al. [18], [23] to rs-fMRI

data which were collected in patients with TS before and af-

ter cranial electrotherapy stimulation (CES) treatment to insight

into the mechanism underlying this intervention strategy.

CES is a noninvasive therapeutic device that applies pulsed,

alternating microcurrent (<1000 µA) transcutaneously to the

head via electrodes placed on the earlobes, mastoid processes,

zygomatic arches, or the maxillo-occipital junction. CES has

been granted approval by the U.S. Food and Drug Administra-

tion since 1979 for the treatment of insomnia, depression, and

anxiety, and it is commercially available for personal use. Com-

pared with other established noninvasive stimulation techniques,

such as transcranial magnetic stimulation or transcranial direct

current stimulation, CES is relatively inexpensive, and it can be

self-administered by patients with few side effects [24]. In the

clinical applications of CES, it is recommended that patients can

be prescribed a CES device to use at home with a regular 20-

to 60-min treatment daily or every other day for the treatment

of anxiety, depression, pain or insomnia [25]–[27]. CES ef-

fects are cumulative so those who do not respond initially may

benefit when given daily treatments for one month or longer

[28]. Previous neuroimaging studies have claimed that CES has

beneficial effects in conditions such as anxiety, depression, in-

somnia, stress, and pain [26], [29]. A recent functional magnetic

resonance imaging (fMRI) study tested 0.5- and 100-Hz stimu-

lation on healthy controls, using blocks of 22 s “on” alternating

with 22 s of baseline (device was “off”), suggesting that CES

caused cortical brain deactivation in prefrontal and parietal re-

gions [30]. Electroencephalographic studies showed that CES

increased alpha activity (increased relaxation), decreased delta

activity (reduced fatigue), and decreased beta activity (decreased

ruminative thoughts) [26], [31]. In addition, CES has been found

to induce changes in brain oscillation patterns, neurotransmit-

ter, neurohormones and endorphin release, interruption of ongo-

ing cortical activity, or secondary effects from peripheral nerve

stimulation [32]. However, it remains unclear how the electrical

current from CES may alter intrinsic brain activity and connec-

tivity in clinical populations. In this study, we found that CES

was effective in treating TS. We applied CES to the earlobes

of TS patients. In this way, the current may initially stimulate

afferent branches of cranial nerves. Then stimulation may be

carried from branches of the facial, glossopharyngeal, and/or

the vagus nerves to the brainstem, the thalamus, and finally the

cortex [30]. We, therefore, hypothesized that CES could alter

intrinsic brain activity and connectivity, which in turn improves

the neuro dysfunction and leads to the normalization of intrinsic

neural circuits governing TS.

ICA has been widely utilized for analyzing brain imaging

data. ICA is intrinsically a multivariate method for blind sepa-

ration of a composite signal into its constituent source signals.

As a data-driven approach, ICA can be used to identify brain

networks in resting-state fMRI besides task-related fMRI since

it does not require a priori information about the source sig-

nals. Each independent component (IC) provides a grouping of

brain regions that share the same response pattern, thus, pro-

viding a natural measure of functional connectivity. There has

been several kinds of multisubject ICA analysis approaches (for

a review, see [33]). We focus on the individual ICA approach

that separates ICA analyses run on each subjects, followed by

clustering to enable group since this approach can preserve the

individuals unique spatial and temporal features.

In the present study, we examined blood oxygenation level

dependent (BOLD) fluctuations and intrinsic brain functional

connectivity based on resting-state functional MRI data. We

applied ICA with HPM algorithm to identify ICs that were re-

producible across individuals. We also calculated the granger

causality index (GCI) [34], [35] as a measure of causal interac-

tions among components of CSTC circuit that generate or con-

trol motor behaviors. We finally performed machine learning

and pattern classification on ICs with significant group differ-

ences that can serve as endophenotype markers to distinguish

the adolescents between TS before CES and normalized TS after

CES.

II. MATERIALS AND METHODS

A. CES Therapy

We used the CES device, called the alpha-stim stress con-

trol system in the clinical treatment, provided by the manu-

facturer, Electromedical Products International (Mineral Wells,

Tex). The alpha-stim stress control system provides cranial elec-

trical stimulation by generating bipolar, asymmetric rectangular

waves with a frequency of 0.5 Hz and a current intensity that can

be adjusted continuously to provide between 10 and 500 µA. At

the beginning of the treatment, patient’s earlobes were clipped

by the electrodes, and the current was adjusted until the patient

felt a mild tingling sensation and/or dizziness, at which point the

current was reduced to just below the reported threshold of sen-

sation. If the patient experienced no sensation, the investigator

increased the current incrementally until the patient perceived

a sensation and then reduced it slightly below that threshold.

Once the current intensity was found, the patient was instructed

to use it consistently throughout the duration of the 24 weeks of

treatment.

The protocol of treatment was that patients took stimulation

once a day with their parents’ help at his or her place of residence

when got in bed. The treatment duration was set to be 60 min

each time. Patients could fall asleep during treatment.

B. Participants

We recruited 43 male or female right-handed patients (less

than 12 years old) with a diagnosis of TS (according DSM-IV)

in the study. All the patients were physical healthy and the IQ
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examination were no less than 100. The patients were drug free

for at least one month before recruited. The exclusion criteria

include co-occurring anxiety and attention deficit hyperactiv-

ity disorder, current depression, current or previous history of

psychosis.

Forty-two patients were completed 24-week treatment and

one patient was dropped out one week after CES treatment

for lack of efficacy. All the patients were encouraged to take

fMRI scan before treatment and at the end of the treatment, but

only eight patients completed both the treatment and scan since

the fMRI scanning was optional for the patients. The safety

screening form and informed consent form were approved by

the Institutional Review Board of Wuhan University People

Hospital. Parental consent was obtained from participants under

age 18. The efficacy of CES was evaluated by Yale Global

Tic Severity Scale (Y-GTSS), and the side effect was recorded

according to patients’ report.

C. Imaging Data Acquisition

Resting-state fMRI was performed on a 3T magnetic reso-

nance unit (GE Signa Medical Systems, Twinspeed, Milwau-

kee) in the Renmin Hospital of Wuhan University. A birdcage

head coil and restraining foam pads were used to minimize head

motion. Functional data were acquired using a gradient-echo,

T2∗-weighted echo-planar imaging with BOLD contrast pulse

sequence. Thirty-two contiguous axial slices that covered the

entire hemisphere and brainstem were acquired along the AC–

PC plane, with a 64 × 64 matrix (repetition time = 2000 msec,

echo time = 30 msec, field of view = 24 cm × 24 cm, and slice

thickness = 4 mm without a gap).

D. Data Analysis

1) Preprocessing: We preprocessed the fMRI data using the

statistical parametric mapping software package SPM8 (Wel-

come Department of Imaging Neuroscience, London, United

Kingdom; http://www.fil.ion.ucl.ac.uk/spm/) implemented in

MATLAB 2012B. During the preprocessing procedures, the

volumes were slice timing corrected, spatially realigned to cor-

rect for motion, normalized to Montreal Neurological Institute-

coordinate system [36], resampled at 3mm × 3mm × 3mm,

and spatially smoothed with an isotropic 8-mm full-width at

half-maximum Gaussian kernel to remove spatial noise, and to

compensate for residual variability in functional anatomy after

spatial normalization and to facilitate application of Gaussian

random field theory for adjusted statistical inference. The spa-

tially smoothed functional data were high-pass filtered via a

discrete cosine transform at a cutoff frequency of 1/128 Hz to

remove low-frequency noise such as scanner drift.

2) ICA with HPM: First, we performed single-subject ICA

for each subject after preprocessing. We used the principles of

information criteria to determine the number of sets of ICs,

N. We combined minimum description length [37], [38] and

Akaike’s information criterion [39] to estimate the lower and

upper bounds, respectively, of the numbers of ICs to generate

for each participant. Thus, these lower and upper bounds de-

fined an interval for the number N of components to generate.

For the TS datasets in this study, the interval was [20:130]. Un-

like conventional ICA, in which only one set of ICs is generated

(we term this “single-set ICA,” or SS-ICA), we generated mul-

tiple sets of components for each participant, which we term

“multiple-set ICA”. For each participant, with an increment of

ten over the interval [20:130], we used the FastICA algorithm to

generate 12 sets of ICs, with each of the 12 sets containing either

20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, or 130 components,

respectively.

The fMRI data were decomposed to spatial ICs and mixing

matrix by applying spatial ICA on each subject after and before

CES. ICs represent brain functional activity and connectivity.

The corresponding column of each IC is time course, which

represents the time variety of brain function network.

Second, we applied HPM algorithm to identify the reliable

components that are significantly reproducible among different

subject. We define a family of ICs as referring to the set of all ICs

for a single scanning run. In this study, we had data from eight

participants in the TS group before and after CES treatment,

yielding a total of 8 + 8 = 16 different families. For each of the

16 families, we generated 12 sets of ICs, with each of the 12 sets

containing either 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120,

or 130 components, as described earlier. In addition, we have

demonstrated previously that assessing whether a matching is

bidirectional is a useful and valid way to test whether an IC

is reproducible between families [23], which terms the Partner

Matching algorithm. In detail, given a component i from family

A, we calculate indices of spatial similarity between IC i from

family A and each IC in family B. We use Tanimoto Distance

to quantify this spatial similarity between components [23]. We

then select the component from family B, say component j,

that is determined to have the maximum similarity index to

component i among all the components of family B. After that,

we calculate all the similarity indices between component j

from family B and each of the components in family A. We then

select the component from family A, say component k, that is

determined to have the maximum similarity index to component

j among all the components of family A. If k = i, then the

matching is bidirectional, and we consider this component in

family A and this component in family B to be partner matched.

We repeat this procedure to find all pairs of components that

are bidirectionally matched between families A and B. Then,

we apply this algorithm to identify matching components across

multiple families. We call a collection of components that match

across families a cluster. For example, a cluster may contain

component i of family A, component j of family B, component

m of family C, etc., all of which are matched to one another

according to the partner matching procedure described earlier.

Therefore, each of these clusters contains the information of

component correspondences between families.

There are two steps in the HPM algorithm. In the first step,

we used Tanimoto distance to quantify the spatial similarity be-

tween components and only bidirectional matching ICs were

identified as matching components cross multiple subjects.

These components that were identified as being significantly

similar to one another in their spatial configuration formed a

cluster. We then performed one-sample t test on the z score
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Fig. 1. Y-GTSS scores of the 42 patients before and after CES treatment. The
horizontal axis shows the subject number from 1 to 42. The first eight subjects
are the eight patients that completed the fMRI sessions. The vertical axis shows
the Y-GTSS score. The star stands for the Y-GTSS score of the subjects before
CES. The circle stands for the Y-GTSS score of the subjects after CES.

maps of ICs within each cluster to obtain the map of significant

voxels for that cluster. The cluster map represented a spatial pat-

tern that tends to be present across subjects. In the second step,

we applied partner matching to the cluster maps to identify cor-

responding clusters across the different sets. The clusters with

the highest Cronbach’s Alpha were selected as optimal clusters.

Each cluster means a pattern that has one or more brain regions.

The cluster of artifactual ICs were identified visually and only

the meaningful clusters be used for the following analysis. We

finally computed the GCI to assess causal influence between

these brain regions by extracting the time course of each IC

within each pattern.

3) Group Differences Between Before and After CES Treat-

ment: The z score maps of reproducible ICs were entered into

group-level random-effect analysis. For each cluster, we entered

z score maps of ICs into the second-level paired t test model im-

plemented in SPM8 factorial module to detect a random effect of

the group difference of the functional connectivity between the

TS adolescents after and before CES. The second-level analysis

identified significant group differences in ROIs within CSTC

circuit. These regions were selected for the pattern recognition

analyses.

4) Machine Learning: By extracting the eigenvectors from

each subject’s individual z score maps of ICs, the time series

of within each of the ROIs that had significant group differ-

ences were defined as the features vectors. We performed pat-

tern recognition using two methods: support vector machine

(SVM) and the maximum uncertainty linear discriminant analy-

sis (MLDA) [40] with cross validation to classify the TS patients

before and after CES and cross verify the detected normalized

functional activity and connectivity results. The support vector

optimization problem can be solved analytically only when the

number of training data is very small [41]. The MLDA method

was also suitable in the situation of small samples [40]. In ad-

dition, fivefold cross validation and leave-one-out cross valida-

tion method were used to quantify the performance of SVM

classifier. The classification accuracy was calculated by averag-

ing 1000 cross validation trials with randomly selected subsets.

Therefore, the sample size in this study is not large but remains

acceptable for binary classification. Importantly, the accurate

Fig. 2. Activity in each of the ten clusters of reproducible independent com-
ponents. The first set of three columns displays the random-effect group activity
maps detected from the eight Tourette’s syndrome patients before CES treat-
ment. The first column is a coronal view, the second is a sagittal view, and
the third is an axial view. The second set of three columns displays the group
activity maps detected from the eight Tourette’s syndrome patients after CES
treatment. Each row in the first and second set of columns displays one group
activity map that was generated by applying a one-sample t test to one of the
ten clusters of independent components. Any two group activity maps within
the same row across the first and second columns are significantly similar to
one another in their spatial configurations. ACC = anterior cingulate cortex;
PCC = posterior cingulate cortex; SMA = supplementary motor cortex; PFC
= prefrontal cortex; PSC = primary somatosensory cortex; PMC = primary
motor cortex.

classification was able to cross verify the features that detected

by ICA and identify the difference of the TS patients between

before and after the CES.

III. RESULTS

A. Clinical Results

The mean age of the 42 patients that have completed the

treatment was 95.90 ± 23.48 months. The duration of TS was

21.12 ± 9.11 months. The score of Y-GTSS was 26.33 ± 1.32

before CES. The total score of Y-GTSS was 11.36 ± 6.44 af-

ter 24-week treatment of CES. We applied two-sample t test

to assess the group difference in Y-GTSS scores of patients
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between before and after CES. The 42 patients after CES had

significantly lower Y-GTSS scores than the ones before CES

(p = 8.14e − 25, t = −14.77, after CES versus before CES).

The mean age of the eight patients that have completed

fMRI scan was 105.88 ± 23.76 months. The duration of TS was

22.50 ± 4.24 months. The score of Y-GTSS was 26.38 ± 1.19

before CES. The total score of Y-GTSS was 10.50 ± 5.88 after

24-week treatment of CES. The eight patients after CES had

significantly lower Y-GTSS scores than the ones before CES

(p = 2.94e − 06, t = −7.49, after CES versus before CES).

All the eight patients with fMRI were responsive to treatment

and three of the 42 patients after CES had the same Y-GTSS

scores as the ones before CES. There was no patient that had

increased Y-GTSS scores after CES among all 42 patients (see

Fig. 1).

We compared the eight patients that had completed MRI scan

and the total 42 patients that had completed the trial. There was

no statistical significant difference in age, duration of TS, and

score of TS between them. There were four headaches and two

insomnia reports. All the events were released without special

treatment during the trial.

B. Reproducible ICs

We performed spatial ICA to generate twelve sets of ICs, with

each of the twelve sets containing either 20, 30, 40, 50, 60, 70,

80, 90, 100, 110, 120, or 130 components, for each TS patient

after and before CES. We then applied HPM method to the

12 sets of components to identify ten significantly reproducible

clusters of ICs in their spatial patterns across patients. One-

sample t test was performed on the ten clusters of ICs for after

and before CES groups, respectively, to generate ten ICs maps,

which represent brain functional activity and connectivity (see

Fig. 2).

C. Group Difference in Resting-State Functional Connectivity

Patterns Before and After CES

The ten reproducible ICs of before and after TS subjects

were compared in a second-level random-effects analysis by us-

ing paired two tailed t test. Compared with TS patients before

CES, TS patients after CES showed significantly lower intrin-

sic functional connectivity in anterior cingulate cortex (ACC),

caudate and posterior cingulate cortex (PCC). Meanwhile, TS

patients after CES showed significantly greater intrinsic func-

tional connectivity in the SMA, prefrontal cortex (PFC) and

primary somatosensory cortex (PSC) (see Fig. 3 and Table I).

We used a combination of p value of 0.01 and cluster extent

threshold of 30 voxels (determined by Monte Carlo simulation)

to correct for multiple comparison. We computed the corre-

lations between the activity of the six regions and the score

difference of Y-GTSS (Y-GTSS of after CES minus Y-GTSS

of before CES). Activity in SMA, PFC, and PSC correlated

positively with the difference of Y-GTSS score, while activity

in ACC, caudate, and PCC correlated inversely with the score

difference. Only neural activity in SMA correlated significantly

with the score difference (r = 0.71, p < 0.05).

Fig. 3. Normalization of brain activity with CES treatment (TS patients after
CES versus TS patients before CES). The two sets of three columns display t

contrast maps comparing the group activity maps from the Tourette’s syndrome
patients after CES and before CES. The images show that relative to Tourette’s
syndrome patients before CES, Tourette’s syndrome patients after CES had
weaker activity (as evidenced by the color blue, the first sets of three columns)
in the SMA, PFC, PSC, while had stronger activity (as evidenced by the color
red, the second sets of three columns) in the ACC, caudate, and PCC.

D. Granger Causality Interactions

We computed two types of granger causality indices between

the time courses of the selected reproducible ten ICs for each

participant. One is influence of regions A on B, the other is in-

fluence of regions A on B through thalamus. That is because the

top-down circuit from cortex to basal ganglia is direct, while the

bottom-up circuit from basal ganglia to cortex via the thalamus.

The TS patients after CES group showed stronger causal influ-

ences compared with before CES group in the connections from

PFC to caudate (0.19 ± 0.06 versus 0.09 ± 0.06, t = 3.60, p =

0.0029), from PFC to ACC (0.15 ± 0.09 versus 0.04 ± 0.03,

t = 3.38, p = 0.0045), from the caudate to PFC via the thalamus

(0.16 ± 0.14 versus 0.05 ± 0.04, t = 2.23, p = 0.0428), while

the TS patients after CES group showed weaker causal influ-

ences in the connections from SMA to PMC (0.07 ± 0.05 versus

0.13 ± 0.06, t = −2.16, p = 0.0484), from pallidum to SMA

via the thalamus (0.04 ± 0.02 versus 0.17 ± 0.15, t = −2.27,

p = 0.0393) (see Table II).

E. Machine Learning Results

Using the activity within the ACC, caudate, PCC, SMA, PFC,

and PSC resulted from group difference in functional connec-

tivity patterns before and after CES, we performed a machine

learning algorithm based on SVM to classify the TS patients

before and after CES treatment, yielding an average accuracy

of 84.28% with five-fold cross validation method and 87.60%

with leave-one-out cross validation method. Additionally, we

also performed classification using the MLDA-based classifier

with leave-one-out cross validation, which achieved a classifi-

cation accuracy of 87.50% with a sensitivity of 86.23% and a

specificity of 91.47%. The classification contributions as shown

in Table I were obtained by the coefficients of the discrimina-

tion hyperplane that measures the weights of these features to

the classification.
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TABLE I
LOCATION AND COMPARISONS OF INDEPENDENT COMPONENT MAPS BETWEEN TS PATIENTS AFTER AND BEFORE CES

Brain Areas Location Peak location T Classification

Side BA x y z statistic contribution

TS patients after versus before (positive)

ACC L 24 0 41 1 +4.08 0.4568

Caudate L NA − 12 11 10 +3.40 0.3022

PCC L 31 0 − 52 22 +3.33 0.2801

TS patients after versus before (negative)

SMA L 6 − 3 − 7 58 − 3.93 0.3980

R 6 3 − 4 56 − 3.96 0.6412

PFC R 46 39 29 40 − 4.22 0.4750

PSC L 1 − 33 − 34 67 − 4.07 0.3875

NA = Not applicable.

All coordinates are in the Montreal Neurological Institute ICBM 152 template.

TABLE II
COMPARISONS OF GRANGER CAUSALITY INDICES OF THE INTERREGIONAL CONNECTIONS OF THE REPRODUCIBLE INDEPENDENT COMPONENTS

TS patients after CES TS patients before CES TS patients After versus Before

PFC → SMA 0.14 ± 0.08, p = 1.70E − 03 0.10 ± 0.04, p = 1.17E − 04 t = 1.19, p = 2.55E − 01

PFC → Caudate 0.19 ± 0.06, p = 5.51E − 05 0.09 ± 0.06, p = 4.50E − 03 t = 3.60, p = 2.90E − 03

PFC → ACC 0.15 ± 0.09, p = 1.81E − 03 0.04 ± 0.03, p = 4.36E − 03 t = 3.38, p = 4.50E − 03

SMA → PMC 0.07 ± 0.05, p = 7.12E − 03 0.13 ± 0.06, p = 2.74E − 04 t = −2.16, p = 4.84E − 02

PSC → PMC 0.14 ± 0.13, p = 1.52E − 03 0.19 ± 0.13, p = 4.93E − 03 t = −0.70, p = 4.97E − 01

PMC → Putamen 0.05 ± 0.04, p = 2.04E − 03 0.06 ± 0.08, p = 6.94E − 03 t = −0.26, p = 7.95E − 01

PSC → Putamen 0.08 ± 0.05, p = 4.32E − 03 0.09 ± 0.08, p = 1.42E − 03 t = −0.36, p = 7.27E − 01

Pallidum → SMA via Thalamus 0.04 ± 0.02, p = 2.80E − 03 0.17 ± 0.15, p = 1.63E − 03 t = −2.27, p = 3.93E − 02

Pallidum → PFC via Thalamus 0.19 ± 0.18, p = 1.95E − 03 0.15 ± 0.13, p = 1.49E − 03 t = 0.46, p = 6.52E − 01

Pallidum → PMC via Thalamus 0.10 ± 0.08, p = 1.38E − 03 0.13 ± 0.11, p = 1.13E − 03 t = −0.72, p = 4.81E − 01

Pallidum → PSC via Thalamus 0.11 ± 0.07, p = 2.22E − 03 0.14 ± 0.07, p = 6.33E − 04 t = −0.83, p = 4.23E − 01

Caudate → PFC via Thalamus 0.16 ± 0.14, p = 1.13E − 03 0.05 ± 0.04, p = 4.91E − 03 t = 2.23, p = 4.28E − 02

The data in each cell in the second and third column represent the mean±std of the GCI. We used two-sample t test to compare the GCIs of TS between after

and before CES groups. The bold in the last column indicates that the comparisons are significant (p < 0.05, uncorrected). X → Y via Thalamus represents the

connectivity between X and Y via the thalamus.

IV. DISCUSSION AND CONCLUSION

In the present study, we applied HPM-ICA, granger causality

as well as pattern recognition methods based on rs-fMRI data

to investigate and cross verify the normalization in intrinsic

brain functional activity and connectivity between TS patients

before and after CES therapy. We found that TS patients after

CES exhibited altered spontaneous functional connectivity in

brain areas within CSTC circuit involved in motor generation or

control, including SMA, caudate, PFC, ACC, and default mode

network (DMN), primary in PCC. The functional activity and

connectivity in motor pathway was suppressed, while activa-

tions in the control portions of CSTC loop were increased in the

TS patients after CES compared with ones before CES. The nor-

malization of the balance between motor and control portions

of the CSTC circuit may result in the recovery of TS patients.

To our knowledge, this is the first study to apply the HPM-ICA

and granger causality analytical approaches to rs-fMRI data

with TS patients before and after CES treatment. From the per-

spective of neurophysiology, we concluded that the intervention

of CES was able to improve the brain neuro dysfunction and

had the obvious promotion effect on TS for their brain func-

tion improvement, which translates the changes of the intrinsic

connectivity networks to therapeutic mechanisms of action and

provides an objective experimental basis for its application in

TS.

We found significantly greater activity in ACC and caudate

in the TS patients after CES than before CES. This finding is

consistent with our previous reports of functional anomalies or

disconnections in this region in TS patients [18]. One DTI study

demonstrated that cortical regions as well as limbic structures

take part in the modulation of tics [9]. Other studies have also

shown decreased fALFF in ACC in TS adolescents based on

rs-fMRI [20], increased activity in ACC during tic suppression

[11], reduced caudate volume both in TS adults and adolescents

[42], [43]. ACC plays an important role in the engagement of

cognitive control [44], [45] that together with caudate represent

the control portions of the CSTC circuit. Tics are caused by

the combined effects of excessive activity in motor pathway

and reduced activity in control portions of CSTC circuits [18].

Therefore, increased pathological intrinsic functional activity

and connectivity in ACC and caudate represented the normalized

engagement of control portions of CSTC circuit.

The TS patients that after CES group had weaker intrinsic

neural activity than ones that before CES group within the sup-

plementary motor area (SMA). In patients with TS disease, it

has been shown that brain regions in the motor pathway of

CSTC circuit, including SMA, premotor area, primary motor
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area, putamen, pallidum and substantia nigra, exhibited exces-

sive activity compared with normal controls [18]. Another fMRI

study reported that activation and functional connectivity of

motor network including frontal, parietal, and subcortical areas

were altered in adult TS patients as compared to controls dur-

ing performance of tasks such as finger tapping [14]. We did

not detect significant differences in basal ganglia and thalamus

by comparing the reliable ICs of TS patients before and after

CES groups. This result is consistent with previous DTI reports,

which only reported the correlation between diffusion param-

eters and measures of tic severity within the TS group but did

not find significant differences in the diffusion indices of basal

ganglia and the thalamus between TS patients and controls [10].

However, we did find that causal influence of the putamen on

SMA via thalamus was weaker in the TS patients after CES than

ones before CES. Previous researches demonstrate that SMA is

responsible to trigger motor response or anticipate that a move-

ment is going to occur [46], [47]. Moreover, SMA has been

shown to play an importance role in tics generation no matter in

resting state or task-related fMRI TS studies [13], [22]. Abnor-

mal activation of motor cortex via basal ganglia thalamocortical

circuits would cause relatively simple tics. Abnormal activation

of SMA as well as premotor and cingulate motor areas would

cause complex tics [48]. Therefore, the weaker activity in SMA

and GCI from the putamen to SMA via thalamus suggests the

normalization of the motor pathway in CSTC circuit.

We detected the DMN in the reproducible ICs and then com-

pared the intrinsic functional activity between TS patients after

and before CES. We found increased functional activity in PCC

in TS patients after CES than ones before CES. The DMN that

mainly includes the PCC, medial prefrontal cortex, bilateral in-

ferior parietal lobes, and the medial temporal lobe is typically

deactivate during cognitive tasks [49]. Particularly, PCC plays

a pivotal role in the DMN [50] which has also been strongly

implicated as a key part of several intrinsic cognitive control

networks [51]. Some previous studies revealed the decreased

ALFF in PCC in TS adolescents [20] based on rs-fMRI, at-

tenuated deactivations with age in PCC in TS adults during a

stroop task [52]. The abnormal pattern of deactivation or low-

frequency fluctuation may reflect the inability to maintain ef-

ficient control of the PCC/DMN function [53]. Therefore, our

finding of increased functional activity and connectivity in PCC

suggests the normalization of functional deficits associated with

impaired motor inhibition.

Computer modeling predictions using a highly detailed

anatomical model has shown that CES induced significant cur-

rents in cortical and subcortical structures [54]. Moreover, CES

stimulation has been investigated to alter cortical activation and

brain connectivity in the DMN [30]. Convergent evidence has

shown that CES caused the alpha band mean or median fre-

quency to shift downward [55], [56]. Meanwhile, the alpha

band conveyed information about the BOLD signal [57]. There-

fore, the observation of altered BOLD signal was associated

with CES therapy. In this way, CES may alter brain oscillation

patterns since the oscillating current from CES may interrupt

nervous system function, resulting in deactivation of cortical

activity [30]. The normalization of TS patients after CES may

due to the changes in brain activity and intrinsic connectivity

networks in line with evidence that stimulation interferes with

oscillatory brain activity and is associated with reduction of

brain wave frequencies (mean alpha power) [30].

Furthermore, SVM and MLDA were used to create classi-

fier models that distinguished TS patients before CES from TS

patients after CES treatment, which attained 87.6% and 87.5%

classification accuracy with leave-one-out cross validation, re-

spectively. The high classification accuracy suggested that the

intrinsic functional connectivity in brain regions within CSTC

circuit could truly differentiate the two groups and cross ver-

ify the detected normalized connectivity, which can be used

as endophenotype to classify the TS patients before and after

CES.

Several limitations of the present study should be noted. First,

the sample size in this study was not large. However, we calcu-

lated the classification accuracy by averaging 1,000 cross vali-

dation trials with randomly selected subsets, which cross verify

the findings of the normalized functional connectivity. The fu-

ture work should be done on a larger training sample, which

may lead to higher classification accuracy. Second, considering

no risk to try CES treatment, the patients who had tried all the

other treatments with no effective outcome voluntarily partici-

pated in the test with a sole purpose to reduce their tic symptoms

and, thus, were very eager to see the effective outcome of new

treatment using CES. Therefore, this was a clinical sample and

there was not a “sham” stimulation group in this study. We

compared the group difference between patients before and af-

ter CES and achieved high-classification accuracy, suggesting

that the findings from patients before and after CES provide

important insights into the neuroscience of TS normalization

after CES, similar studies consisting of an active CES group, a

control group and a “sham” treatment group are needed to do

further more relevant analysis including the group comparison

and classification analysis. Third, different TS individuals may

have different responses to the scanner noise of fMRI which

may lead to change of brain function. It will be necessary to

replicate these results with silent techniques such as EEG. Fi-

nally, the individual ICA method has the advantage of getting

unique spatial and temporal features, but ICs are not necessary

uncompounded in the same way since the noisy maybe different

for each participant.
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